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ABSTRACT
We describe a system called LearnIT that can observe an

iterative solution to a parametric design problem and learn the
design strategy employed. The program represents the strategy
as a set of rules, which it then uses to automatically generate new
design solutions when the design requirements change. Because
the rules are learned from the original designer, these new so-
lutions reflect the original designer’s engineering judgment and
knowledge of implicit constraints. LearnIT’s approach is based
on the observation that often iterative design is actually a form
of debugging: each iteration is an attempt to repair a particular
flaw in the design. Thus, a program can learn the designer’s strat-
egy by observing what actions are taken in response to each kind
of flaw. We have found that the state of the design constraints
(satisfied or not satisfied) is a good indicator of what flaws are
being addressed at any given time. Because of its ability to cap-
ture and reuse the original designer’s understanding of the prob-
lem, LearnIT’s primary use is as a design documentation system.
However, because it can learn and reuse a design strategy, it can
also be considered a design automation tool.

1 Introduction
Traditionally, design rationale management tools have been

intended to help store, index, and retrieve human generated de-
sign documentation (e.g., [2], [7], and [11]). The services that
these tools provide have proven quite useful, but researchers have
continued to look for ways to reduce the cost of managing docu-
mentation. A recent trend is the creation of methods for directly
computing some of the documentation itself, thus relieving the

designer of this burden (e.g., [6], [8], and [14]). While all of
these tools and methods reduce the up front cost ofcreatingdoc-
umentation, they are comparatively less effective at reducing the
downstream cost ofusingit. The human designer must still sort
through the documentation, find the relevant information, inter-
pret its meaning, and apply it to the problem at hand. Of course
current tools do provide assistance in sifting through the infor-
mation, however our goal is to reduce this downstream cost even
further by creating a documentation system that not only can gen-
erate useful documentation, but also can apply it to new prob-
lems, without human intervention. We have developed a system
called LearnIT that can observe an engineer’s design activities,
learn the design strategy governing his or her decisions, and then
automatically apply this strategy to new design problems.

LearnIT’s domain is the restricted, but important, domain of
parametric design. In this domain, a design problem is charac-
terized by a set of parameters and a set of variables. Consistent
with the optimization literature (e.g., [13]), we define a parame-
ter as a quantity that can be directly modified while a variable is
a quantity that is computed from the parameters. For example,
if the length, cross-sectional area, and density of a beam are the
parameters, the total mass of the beam would be a variable. In all
real design problems, some of the variables are subject to con-
straints, which may be either equality or inequality constraints.
The designer’s task is to find a set of parameter values that satisfy
the constraints.

LearnIT sits between the designer and the modeling and
analysis software as shown in Figure 1. LearnIT observes the se-
quence of design modifications and learns the designer’s strategy
for satisfying the constraints. At the implementation level, the
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Figure 1. LearnIT observes the interaction between the designer and the

modeling & analysis software and learns the design strategy employed.

LearnIT records the strategy in the form of rules which it then uses for au-

tomated redesign if the design requirements should change. Parameters

are quantities that can be directly changed. Variables are computed from

the parameters.

program learns the conditions that determine when the designer
would choose to modify any particular parameter. LearnIT ex-
presses the design strategy as a set of if-then (production) rules.
When the design requirements change, LearnIT uses these rules
to automatically generate a new design solution. Because the
rules are learned from the original designer, this new solution re-
flects the original designer’s engineering judgment, knowledge
of implicit constraints, and overall familiarity with the problem.

2 Example: Circuit Breaker
We use the design of a circuit breaker to illustrate LearnIT

in operation. Figure 2 shows a parameterized model of the de-
vice. Figure 3 defines the parameters. In normal use, current
flows from the lever to the hook. When there is a current over-
load, the bimetallic hook heats and bends, releasing the lever and
interrupting the current flow. After the hook cools, pressing and
releasing a push-rod (not shown) resets the device.

The designer’s objective is to find parameter values for
which the circuit breaker will trip when a 15 amp overload is ap-
plied for 5 seconds. The requirements can be expressed in terms
of three constraints: (C1) The final deflection,δ, of the hook must
exceedh, the initial overlap between the hook and the lever, thus
allowing the hook and lever to disengage. (C2) The time,∆T,
at which they disengage must equal 5 seconds. (C3) The hook
stress,σ, which is the only critical stress, must be less than 100
MPa. Figure 4 shows the sequence of iterations the designer used
to obtain a satisfactory solution.

Now imagine that sometime in the future the design require-
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Figure 2. Parameterized circuit breaker model. Both layers of the hook

have the same thickness (TH ). The width of the hook (WH ) and the width

of the lever (WL) are perpendicular to the page.

Symbol Meaning Initial Value
h Initial overlap of hook and lever 1.0

TH Thickness of each bi-metal layer 0.2
LH Length of hook 10.0
WH Width of hook 2.5
TL Thickness of lever 2.0
LL Length of lever 10.0
WL Width of lever 1.5

Figure 3. Parameters for the circuit breaker. Values in millimeters.

ments change: instead of tripping at 15 amps, the device must
now trip at 25. LearnIT’s task is to examine the trace of the orig-
inal design session (Figure 4), identify the “strategy” employed,
and use this strategy to find new parameter values that will satisfy
the new requirements.

Assuming the original designer was experienced, the design
trace in Figure 4 will be more like a purposeful march to a good
solution than a random search through the parameter space.1 The
decisions would have been based on knowledge of similar prob-
lems, good engineering judgment, and knowledge of implicit
constraints. The designer would have translated this knowledge

1This assumption is discussed in Section 5.
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Step Parameter C1 : δ > h C2 : ∆T = 5 C3 : σ < 100
1 TH → 0.1 < > SAT
2 h→ 0.7 < > SAT
3 TH → 0.07 < > SAT
4 LH → 13.0 < > SAT
5 TH → 0.05 < > SAT
6 h→ 0.5 < > SAT
7 TH → 0.04 < > SAT
8 WH → 1.44 SAT > SAT

SAT SAT SAT

Figure 4. Trace of circuit breaker design session. The 2nd column is

the parameter that was changed and the new value in millimeters. The

last three columns are the states of the constraints before the parameter

was changed. “<” = variable too small, “SAT” = constraint satisfied, and

“>” = variable too large. δ is the final deflection of the hook. ∆T is the

trip time. σ is the stress in the hook. e.g., on step 3, the third constraint

was satisfied but the hook deflection was too small and the trip time too

long. Each “step” may be composed of multiple iterations all changing the

same parameter. e.g., in step 8, the designer changed WH to 1.44mm in

4 iterations. Step 8 resulted in all constraints being satisfied.

into a set of preferences about how to modify the design to sat-
isfy the constraints. For example, the designer’s preferred means
of making the circuit breaker trip faster was to reduce the thick-
ness (TH ) of each layer of the bimetallic strip. This method was
preferred, and thus was used first, because it is quite effective at
reducing trip time: it both increases the electrical resistance so
that the hook heats faster, and decreases the bending resistance
so that a smaller amount of thermal expansion is needed to bend
the hook. However, the designer also preferred to avoid making
the layers too thin and fragile. Thus, after reducing the layers
to 0.1mm, the designer chose to start reducing the initial overlap
(h) between the hook and the lever. This parameter also is quite
effective at reducing trip time, but it was not the first preference
because the smallerh is, the more likely it is that small vibrations
will accidentally trip the device.

If we continued to examine the designer’s reasoning, we
would find that each of the modifications in Figure 4 has a good
reason behind it, just as the modifications toTH andh did. Thus
if we can examine the design trace and learn how to reproduce
the designer’s decision making process, we will have identified
a good design strategy. Note that our goal is to be able to du-
plicate the designer’s decision making process, not to understand
the reasons behind the decisions; only the designer knows those.
Said differently, we want to know what the designer’s prefer-
ences are, not why they are the preferences.

With this in mind, our research task was to identify the prop-
erties of the design, or of the trace of the design session, that
best indicate the designer’s preferences. We explored as possi-
ble indicators: the values of the variables and parameters, the

magnitudes of the gradients (partial derivatives of the variables
with respect to the parameters), the order in which the parameters
were modified, and the states of each of the constraints.

We found that often the best indicator appears to be a com-
bination of the latter two properties. It appears that the kind of
modifications the designer prefers to make depends on the state
of the constraints, i.e., the parameter that the designer chooses to
modify depends on which constraints are satisfied and which are
not. Our explanation for this is that in iterative parametric de-
sign, the designer may actually be thinking in terms of repairing
flaws. For each different kind of flaw, the designer chooses a spe-
cific set of remedies. The flaws themselves are manifest as un-
satisfied constraints. Thus the state of the constraints determines
what changes the designer will make. In the circuit breaker for
example, if the hook deflection is too small – the deflection con-
straint is not satisfied – the designer will take actions to increase
the deflection; if the stress is too large – the stress constraint is
not satisfied – the designer will take other actions to reduce the
stress.

Given this observation, our approach to learning the de-
signer’s strategy is based on the following heuristic:The modifi-
cations the designer makes for any given state of the constraints
are the preferred modifications for that state. If there is more
than one preferred kind of modification for any given state of the
constraints, the order in which those modifications were made
indicates the preferred order of use.

In the specific problem shown in Figure 4, we can identify
two distinct kinds of flaws and corresponding sets of remedies.
The first kind of flaw is when constraintsC1 andC2 are not satis-
fied whileC3 is. This case corresponds to the hook not tripping
at all. The three preferred remedies, in decreasing order of pref-
erence, are: reducingTH , reducingh, and increasingLH . (The
first two of these preferences are described above.) The second
kind of flaw is whenC1 andC3 are satisfied while the trip time is
too long (C2 not satisfied). In this case, the design requirements
are almost satisfied and just a little fine-tuning is necessary. The
hook width is the preferred parameter for fine-tuning because the
trip time is not overly sensitive to it.

Using our heuristic for identifying the designer’s strategy,
our program turns the trace of an iterative design solution into
a set of if-then rules describing the designer’s preferences (Fig-
ure 5). Each rule has three parts: Theantecedent(“if” part) de-
scribes the state of the constraints for which that rule is applica-
ble. Theconsequent(“then” part) indicates which parameter to
modify and in which direction. It also indicates therule limit:
the maximum or minimum value, depending on whether the pa-
rameter is increased or decreased, that the parameter should have
as a consequence of applying the rule. The “expected outcome”
part of the rule describes how the modification affected the con-
straints in the original problem. This is used to find a suitable
rule in situations where none of the rules is an exact match (see
Section 3.2.1). Each of the rules is given a number to indicate the
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Rule 1:
If:

C1: δ too small
C2: ∆T too large
C3: σ less then yield (SAT)

Then:
decreaseTH with a limit of 0.1mm

Expected outcome:
δ will increase
∆T will not change
σ will increase

Rule 2:
If:

C1: δ too small
C2: ∆T too large
C3: σ less than yield (SAT)

Then:
decreaseh with a limit of 0.7mm

Expected Outcome:
δ will increase
∆T will not change
σ will not change

Figure 5. Sample rules from circuit breaker design.

order in which it was encountered in the original design problem.
In a redesign situation, when more than one rule is applicable, the
one with the lowest number is applied first.

After LearnIT has generated the set of rules describing the
original circuit breaker design session, it is ready to solve our
new problem in which the trip current has been increased to
25 amps. The final parameter values that LearnIT selected are
shown in Figure 6. We discuss LearnIT’s redesign process in de-
tail below, here we point out a few noteworthy properties of this
new solution. First, the new solution reflects the preference for
reducing trip time by reducing the thickness of the bi-metal strips
rather than reducing the initial overlap of the hook and lever. In
the original problem, the designer reducedTH from 0.2mm to
0.04mm and reducedh from 1.0mm to 0.5mm. In the new prob-
lem, LearnIT used most of the range ofTH while using only a
little more than half of the range ofh. Second, once LearnIT ob-
tained a design that could successfully trip, it used the strategy of
adjusting the hook width to fine-tune the trip time. Thus, the de-
sign strategy LearnIT used to create this new design is a faithful
reproduction of the original designer’s strategy.

h TH LH WH TL LL WL

0.7 0.0597 13.0 1.44 2.0 10.0 1.5

Figure 6. The final values of the parameters for the redesigned 25 amp

circuit breaker. Values in millimeters.

3 How LearnIT Works
The previous section described LearnIT’s approach and pro-

vided an example of the program in action. This section provides
a more detailed description of the program’s rule learning and re-
design approaches.

3.1 Learning the Rules
As LearnIT observes a design session, it records all of the

information that it will later need to generate the rule set describ-
ing the underlying design strategy. For each iteration, the pro-
gram computes and records the state of each of the constraints.2

The program uses an empirically determined 5% tolerance on
the constraints to compensate for the fact that designers do not
always exactly solve the constraints, but consider them to be
solved when they are “close enough.” This is particularly true
in the early stages of the solution when the work done to exactly
satisfy a constraint might be undone by later iterations intended
to satisfy other constraints. By using a tolerance, LearnIT gets
a reasonable estimate of when the designer would consider any
particular constraint to be satisfied.

At the completion of the design session, LearnIT lumps to-
gether all consecutive iterations for which the same parameter
was modified and the state of the constraints was unchanged.
The result is the representation shown in Figure 4. Each of these
“combined steps” describes a piece of the design strategy and is
directly transformed into an if-then rule as was described above
(see Figure 5 for sample rules).

The only special case rules occur when two consecutive
combined steps have different constraint states. Steps 7 and 8
in Figure 4 are an example. During step 7,TH was changed so
much that the constraint on the hook deflection changed from be-
ing unsatisfied to being satisfied. We assume that changingTH

was a preference under both of these states, and thus, step 7 is
turned into two rules. In general, ifn constraints change state,
there will be 2n rules.

3.2 Automated Redesign
The automated redesign process is an iterative one. LearnIT

finds the rule that best matches the current state of the design and
changes the corresponding parameter. After making the change,
LearnIT calls the analysis program to recompute the variables.

2The analysis program provides the values of the constrained variables;
LearnIT compares these values to the desired values to determine if the con-
straints are satisfied.
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LearnIT repeats this process until all of the constraints are satis-
fied or there are no applicable rules left. In the former case, the
program has successfully satisfied the new requirements. In the
latter case, the redesign is not completed, however, by this point
the program may have already done much of the work, thus mak-
ing the new designer’s task much easier.

We usually start the redesign process from the parameter val-
ues used at the start of the original iterative design solution. For
example, the values in Figure 3 are used as the starting point for
new circuit breaker designs. This, in effect, allows the program
to re-think all of the original decisions. If instead we started from
the final state of the original design, the starting point might al-
ready be based on decisions that are not preferred in the context
of the new problem.3

The next two sections describe in detail the means by which
LearnIT selects the best rule and decides how much to change
the corresponding parameter.

3.2.1 Finding the Best Rule The process of select-
ing the best rule is illustrated in Figure 7. Before the program
can start the process, however, it must first evaluate the current
states of the constraints. Here again, the program uses a small
tolerance on the constraints; this time the tolerance compensates
for numerical round off errors (we have used both a 0.5% and a
5.0% tolerance and found that both provide satisfactory results.)

If any of the rules match exactly, and they have not yet
reached their limits, the one with the lowest rule number is the
best.4 Recall that a lower rule number indicates a higher prefer-
ence. If all of the rules have exceeded their limit, more analysis
is necessary to find the best rule.

Imagine that at a particular point in the redesign process, rule
X is the only rule that exactly matches the state of the constraints.
Furthermore, assume that when ruleX is applied, it ordinarily in-
creases parameterP up to a limit of say 10mm. If, at this point,
P is already 12 mm (i.e., larger thanX’s limit), should we still
apply ruleX? To answer this question, we must know if the orig-
inal designer was working against a hard constraint preventingP
from being larger than 10mm, or if this was just a preference. If
there is some other rule that also increasesP, to say a limit of
20mm, we would have evidence that 10mm was only a prefer-
ence.5 In this case, it would make sense to apply ruleX until a

3Starting the new redesign from the final parameter values of the original de-
sign would likely require reversing the reasoning behind each rule. This would
allow the program to undo decisions that were not appropriate for the new prob-
lem. For example, a rule that decreases a particular parameter in order to decrease
the trip time would be transformed into a rule that increases that parameter in or-
der to increase the trip time.

4As defined above, the “rule limit” is the maximum or minimum value, de-
pending on whether the parameter is increased or decreased, that a parameter
should have as a consequence of applying a rule.

5This other rule would be applicable for some other state of the constraints.
Otherwise, this analysis would be unnecessary and we could directly apply this
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Figure 7. The rule selection process.

limit of 20mm, if necessary.
To facilitate this kind of analysis, LearnIT generates a table

of limits. Figure 8 shows the table for the circuit breaker prob-
lem. The last 8 entries are generated directly from the rules: Each
entry contains the parameter name and limit for a particular rule.
The entries are listed in order of increasing rule number, with the
entry for rule 1 higher in the table. Note that these entries corre-
spond directly with the 8 steps in Figure 4. The first 4 entries in
the table are the initial values of the parameters from the original
design session. These are included because they help bound the
range of parameter values that the original designer considered
acceptable. They are listed in the order in which the parameters
were first changed during the original design session.

If all of the rules matching the constraints have exceeded

other rule.
5 Copyright  1999 by ASME



Number Parameter Limit Value
1 TH 0.2
2 h 1.0
3 LH 10.0
4 WH 2.5
5 TH 0.1
6 h 0.7
7 TH 0.07
8 LH 13.0
9 TH 0.05
10 h 0.5
11 TH 0.04
12 WH 1.44

Figure 8. Limit table for the circuit breaker. The first 4 entries are the

initial values for those parameters that were changed. The final 8 entries

correspond to the 8 steps in Figure 4.

their limits, the best rule is the one whose parameter’s next limit
is highest in the table. The reason is that if the next limit is very
low in the table, the designer must have tried a number of other
alternatives before modifying the parameter. Thus, modifying
the parameter was probably not a preferred action. Conversely,
if the next limit is high in the table, the designer was probably
quite comfortable modifying the parameter.

If no rule is applicable because every limit has been ex-
ceeded, LearnIT relaxes the criteria for a positive match. The
first exception occurs if some of the constraints do not match the
rule, but the “expected outcome” portion of the rule indicates it
will help satisfy those constraints. In this case the rule is still
considered applicable. For example, if a rule normally applies
when the stress constraint is satisfied (e.g., when the stress is less
than yield), the rule can be applied in situations when the stress
constraint is not satisfied, so long as the rule tends to reduce the
stress. The second exception occurs if some of the constraints
do not match the rule because those constraints are already sat-
isfied. In this case, the rule is also still considered applicable.
For example if a rule normally applies when both the stress and
temperature are too high, the rule can be applied to situations in
which only the temperature is too high and the stress constraint
is satisfied. The rule was intended to fix two flaws, but it is still
likely to be useful if one of the flaws has already been fixed.

As before, if multiple rules match under the relaxed crite-
ria, the best is the one with the lowest rule number. Similarly,
as before, if the limits of each of the matching rules have been
exceeded, the best rule is the one whose next limit is highest in
the table. If all of the limits in the table have been exceeded, then
there are no applicable rules, and the redesign process terminates.

We have found that there are some problems for which the
relaxed rule matching criteria captures the designer’s preferences
better than the more strict criteria. This appears to be the re-

sult of learning the designer’s strategy from too few examples.
For instance, if the designer made a particular modification when
there were two flaws (two unsatisfied constraints), LearnIT will
assume that this strategy applies when exactly those two flaws
exist. It is possible that this is also the preferred strategy when
only one of the flaws exists, however, LearnIT will be unable to
determine this without seeing an example of what is done when
only one flaw exists. Clearly, without an adequate set of exam-
ples, LearnIT can generate overly specific rules. This is why we
are currently working to extend our approach to enable learning
across several design examples. (See Section 5.) In the mean-
time, however, our program provides an option to redesign using
the relaxed rule matching criteria, even if there are rules that are
a strict match.

After picking the best rule, LearnIT checks to make sure
the rule will not setup a cycle in the solution. We have found
that occasionally a pair of rules can interact in such away that
the solution oscillates rather than converging. The first rule will
change a parameter in one direction until the states of the con-
straints change and the rule is no longer applicable. At that point
the second rule becomes applicable; it changes the parameter in
the opposite direction, making the first rule once again applica-
ble, and thus beginning the next cycle. To break this kind of
cycle, LearnIT monitors the sequence of parameter changes. If
a parameter oscillates (e.g., its value increases then decreases),
LearnIT marks the second rule in the cycle as the culprit and re-
moves it from further use. In our experience, this technique has
been entirely successful in breaking the cycle and allowing the
program to converge to a final solution.

3.2.2 Determining the Parameter Change Once
LearnIT has found the best rule to apply, it must determine how
much to change the corresponding parameter. As a first esti-
mate, LearnIT computes the maximum amount the parameter can
change before the constraints change state. (If the constraints did
change state, the rule would no longer be applicable.) LearnIT
uses numerical first derivatives to make the estimate. However,
because this is only an estimate, we do not want to change the
parameter too much in any given iteration. Thus, if the change
would be substantially more than 1% of the parameter’s current
value, LearnIT uses a fraction of the change (1/7th).6 However,
in all cases, LearnIT selects a new parameter that does not ex-
ceed the next parameter limit – either the limit contained in the
rule itself, or if that has already been exceeded, the next applica-
ble limit from the limit table.

LearnIT can handle discrete parameters just as well as con-
tinuous ones. As part of the problem definition, a list of legal
values is attached to each discrete parameter. To determine how

6These values have been found to work well, but have no special significance.
Using a larger fraction would tend to speed up the solution, however, it would
increase the risk of using a rule inappropriately.
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much to change a discrete parameter, the program uses the same
procedure as for continuous ones and then rounds to the nearest
legal value.

4 Related Work

4.1 Design Rationale Management

There is a large and growing body of work in design ra-
tionale capture and construction. [2], [7], and [11] offer good
overviews of work relevant to the work described here. However,
much of that work is focused on tools for managing documenta-
tion that is human generated whereas our goal is to automatically
compute and reuse rationales.

There have been a number of recent efforts aimed at the first
half of our task, automatically computing design documentation.
For example, Gautier and Gruber describe a system that uses
component-connection models to compute the purposes of the
parts of a device [6; 8]. Similarly, Raghavan and Stahovich de-
scribe a system called ExplainIT that uses numerical simulation
to compute the purposes of the geometric features on the parts of
a device [14]. However, both of these systems express the pur-
pose in natural language (English text), rather than in a machine
usable form.

More similar to our task is the work of Garcia and de Souza
[5]. They describe an Active Design Documentation system that
computes rationales for iterative parametric design problems.
Their system works from an initial design model that describes
both the artifact and the decision making process for selecting
parameter values. Their system compares the parameter values
predicted by the decision making model with those actually se-
lected by the designer. If the prediction and selection do not
match, the designer is prompted for the rationale, which can then
be added to the program’s knowledge-base. Their system works
from a decision making model constructed by a knowledge engi-
neer, while our system directly infers the decision making model
by observing a design session.

Perhaps most similar to the work here is a system called
SketchIT [18] that can transform a rough sketch of a mechani-
cal device into a Behavior Ensuring Parametric Model (“BEP-
Model”): a parametric geometric model augmented with con-
straints that ensure the geometry will produce the desired behav-
ior. The BEP-Model serves as a form of design documentation:
as long as future design efforts do not violate the constraints, the
device will still produce the originally intended behavior. The
SketchIT and LearnIT systems are complementary: SketchIT
transforms the designer’s intent into constraints, LearnIT learns
how the designer chooses parameter values to satisfy the con-
straints.

4.2 Machine Learning
Machine learning has been applied to a wide variety of

different problems in design and engineering (see [4] for an
overview of recent work). However, we are aware of no pre-
vious work that specifically addresses our task of learning the
designer’s design strategy and reusing it for automated redesign.
Nevertheless, there have been a number of research efforts that
touch upon issues related to our task. We summarize a sampling
of those here.

Ivezic and Garrett describe a machine learning system for
simulation-based support of early collaborative design [9]. How-
ever, their goal is to use statistical neural networks to learn the
mapping from form to behavior, whereas our goal is to learn the
strategy by which the designer modifies the design to obtain the
desired behavior. Similarly, Jamalabad and Langrana describe
a system that can record sensitivity information from an opti-
mization run and use it to speed up later optimization runs [10].
Their task it to learn the shape of the design space in terms of
the sensitivities, whereas our task is to learn how an expert de-
signer would navigate the design space. Bhatta and Goel describe
a model-based method for learning generic teleological mecha-
nisms such as cascading, feedback, and feedforward [1]. Their
method learns how design fragments can be assembled to achieve
a satisfactory design, while our method learns how the parame-
ters of a design should be adjusted to achieve a satisfactory de-
sign. Also, their method works from structure-behavior-function
models while our method does not require a model of the device.

The work of Schwabacheret al. is perhaps the most directly
related machine learning application [16]. They use an inductive
learning algorithm to learn how to select a starting prototype for
a numerical optimization problem. Thus, our systems are com-
plementary: theirs learns how to select initial parameter values,
ours learns how an expert designer gets from the initial values to
a final solution.

4.3 Iterative Design
Many believe that iteration is central to design. (See [15]

for a classification of iteration). For example, iteration is empha-
sized in introductory design texts (e.g., [17]) and it is the basis of
numerical optimization techniques (e.g., [13] and [20]) and multi
disciplinary optimization (e.g., [3]). Our work is related to work
aimed at exploring the computational aspects of iteration. Here
we summarize the most closely related efforts.

The DOMINIC II system of Orelupet al. was designed to
automate iterative parametric redesign [12]. Our problem state-
ments are the same: find parameter values that satisfy the con-
straints. However, we use very different approaches: DOMINIC
II relies on hill climbing while LearnIT works from design rules
learned from the designer. DOMINIC II monitors its own perfor-
mance and switches from one form of hill climbing to another,
as needed. Thus, it does have a notion of selecting appropri-
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ate strategies at run time. However, it switches strategies based
on how fast the solution is converging, whereas we attempt to
duplicate the strategy of an expert designer. In fact, this is the
fundamental difference between the two systems: we use prob-
lem specific information learned from an expert designer, while
their goal is to solve the problem using only domain independent
techniques.

The Engineous system [19] is similar to the DOMINIC II
system except that it provides the ability to use problem spe-
cific rules to guide the solution process. However, these rules
are manually created and entered into the system, while LearnIT
automatically learns its redesign rules by observing a sample de-
sign session.

5 Discussion & Future Work
LearnIT, as its name suggests, is a machine learning system.

As with all machine learning systems, the rules LearnIT learns
are only as good as the lessons it is taught. Our program can only
learn a good design strategy if it is shown an example of one.
Thus, LearnIT works best on problems for which the designer
has reasonable experience. If the designer is simply exploring the
design space without direction, the strategy our program learns
will also suffer from a lack of direction.

Our current solution to this problem is to provide the de-
signer with a backtrack option. If the designer makes a few steps
of unguided exploration, he or she can backtrack to the last pur-
poseful step and then take new purposeful steps to implement
the insights gained from the exploration. In future generations of
the LearnIT system, we plan to develop techniques to distinguish
between purposeful design iterations and unguided exploration.
For example, if a sequence of design iterations returns the design
to an earlier state, that sequence may have been an unsuccessful
exploration. Similarly, if an iteration has detrimental effects on
all of the constraints, it is possible (but not guaranteed) that the
step was an unguided exploration.

Currently our program attempts to learn the designer’s strat-
egy by observing a single design session. Testing has indicated
that this approach does work well: the learned rules are ade-
quate to solve a reasonably large range of problems. However,
we are currently working to increase this range by developing
techniques that can learn across multiple design sessions. This
will provide our program with a more complete picture of the
designer’s strategy, and thus will allow it to compute a more com-
plete set of design rules. Considering multiple different training
examples will also help to prevent creating rules that are either
overly specific or overly general (see Section 3.2.1).

Although the rules that LearnIT produces can usually solve
a wide variety of problems, it is always possible to create a new
problem that is so different from the original that LearnIT is un-
able to solve it. In this case, the program will get as close to
a solution as it can, but will stop when there are no applicable

rules left. At that point the designer can take over and manually
complete the problem. Once the designer has succeeded in com-
pleting the problem, LearnIT can then perform its usual analysis
and add the new steps to its rule-base. The new rules can then be
used to help solve other problems. Furthermore, if the designer’s
manual iterations change the design to a state where LearnIT has
applicable rules, it can continue on with the automated redesign.

Even if the designer does need to perform some manual it-
erations, the designer’s task is usually easier than it would oth-
erwise be because LearnIT will almost always get part way to
a solution. However our goal is to reduce, if not to completely
eliminate, the need for human intervention. Towards this end,
we are exploring the use of traditional numerical optimization to
supplement the rule-base. We would use the rule-based approach
to the extent possible, and then fall back to numerical optimiza-
tion to complete the problem if necessary. The optimizer might
be used to find a solution that minimizes the deviation from the
learned strategy.

Numerical optimization may also help to overcome another
of LearnIT’s limitations. Currently our program assumes that
there is the same set of constraints in both the new problem and
the original one. For example, if the original problem had an
equality constraint on the trip time, so must the new problem,
although the desired trip time need not be the same. If the new
problem has a different set of constraints, we might again be able
to use a form of numerical optimization to supplement the rules.
The challenge would be to make design changes which best sat-
isfy the new constraints while still being consistent with the orig-
inal rules.

For the purposes of design, large-scale systems such as
airplanes and automobiles are, by necessity, decomposed into
smaller modules that are manageable by individual designers.
LearnIT is intended to learn how each individual module is de-
signed, so that if necessary it can be redesigned automatically.
In a related project, we are developing tools to manage the re-
design of the larger system to which the modules belong. These
tools use qualitative physical reasoning to determine which mod-
ules need to by modified in order to satisfy new system level de-
sign requirements. LearnIT will then use its rule-base to redesign
those modules.

6 Conclusion
We have described a system called LearnIT that can observe

an iterative solution to a parametric design problem and learn
the design strategy employed. The program represents the strat-
egy as a set of rules, which the program then uses to automat-
ically generate new design solutions when the design require-
ments change. Because the rules are learned from the original
designer, these new solutions reflect the original designer’s engi-
neering judgment, familiarity with similar problems, and knowl-
edge of implicit constraints.
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LearnIT’s approach is based on the observation that in itera-
tive design problems, designers often work in a debugging mode.
At each iteration, the designer identifies the unresolved flaws in
the design and chooses a design action to eliminate those flaws.
We have found that the state of the constraints – whether they are
satisfied or not – is a good indicator of which flaws the designer
is working on at any given time. LearnIT’s approach to infer-
ring the designer’s strategy can be summarized by the following
heuristic: The design modifications the designer makes for any
given state of the constraints are the preferred modifications for
that state. If there is more than one preferred kind of modifi-
cation for any given state of the constraints, the order in which
those modifications were made indicates the preferred order of
use.

We have tested LearnIT on a variety of problems7 and found
that our approach does accurately capture the designer’s strategy.
Furthermore, we have found that the rules LearnIT produces can
solve a relatively large range of problems. For example, the rules
learned from the design of a 15 amp circuit breaker were suitable
even when the trip current was doubled to 30 amps.

Our work was motivated by the desire to reduce the cost of
creating and using design documentation. From this perspec-
tive, our program provides useful capabilities. With a minimum
of human intervention, our system helps to ensure that future
design modifications are consistent with the reasoning behind
the original design. However, our system is also useful when
viewed as a design automation aide. We have indeed discov-
ered that LearnIT is a handy tool for exploring a design space.
After providing an initial training example (the solution of one
design problem) one can easily change material properties, di-
mensions, etc., and LearnIT can automatically generate new so-
lutions. Thus, LearnIT can both help the original designer find a
satisfactory solution, and can help future designers successfully
adapt the design to new requirements.
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