
May 31, 2002 22:30

Proceedings of DETC’01
2001 ASME Design Engineering Technical Conferences

September 9-12, 2001, Pittsburgh, Pennsylvania

DETC01/DTM-21684

SPATIAL REASONING ABOUT MECHANICAL BEHAVIORS

Levent Burak Kara
Mechanical Engineering Dept.

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
Email: lkara@andrew.cmu.edu

Thomas F. Stahovich
Mechanical Engineering Dept.

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
Email: stahov@andrew.cmu.edu

ABSTRACT
We describe an approach that uses causal reasoning and ge-

ometric reasoning to construct explanations for the purposes of
the geometric features on the parts of a mechanical device. To
identify the purpose of a feature, the device is simulated with
and without the feature. The simulations are then translated into
a “causal-process” representation, which allows qualitatively im-
portant differences to be identified. These differences reveal be-
haviors that the feature causes to occur and those it prevents from
occurring. The focus of this paper is geometric reasoning tech-
niques that reveal causal relationships between the caused and
prevented behaviors. For example, these techniques can deter-
mine if a particular caused behavior is responsible for preventing
a particular prevented behavior.

INTRODUCTION
Our main objective is to create methodologies that allow a

computer program to automatically compute particular types of
design documentation. There are a variety of different kinds of
information that are commonly included in design documenta-
tion such as a history of the decision making process, a list of al-
ternatives considered, and a description of the intended purpose
of the each of the parts of the design. Our focus is on the latter
type of information, which is necessary for modifying a design
without introducing unintended side effects.

Towards our goal, we have built a computer program called
ExplainIT-II that automatically computes and documents the pur-
poses of geometric features on the parts of a mechanical device.
Our program computes purpose by comparing a dynamic simula-

tion of the original device (nominal simulation), to a simulation
of the device with the feature removed (modified simulation).
The differences between the two simulations are indicative of
the feature’s purpose. We distinguish between two kinds of pur-
poses: Behaviors that occur only when the feature is present are
behaviors that the feature causes. Conversely, the new behav-
iors that occur only after the removal of the feature are those the
feature prevents.

To identify the behaviors caused and prevented by the fea-
ture, we have developed a new causal representation that de-
scribes a rigid-body dynamic simulation as sets of “causal pro-
cesses.” A causal-process represents the interactions between the
components of a device during a time interval in which both the
components’ behaviors and the causes of the behaviors remain
qualitatively uniform. To compare the two simulations, our pro-
gram first represents them as sequences of causal-processes and
prunes out any processes common to the two simulations. The
purposes of the feature are then extracted from the remaining
causal-processes: Causal-processes unique to the nominal sim-
ulation constitute the set of behaviors that the feature causes,
those unique to the modified simulation represent behaviors pre-
vented by the feature. Because these differences are already
expressed in the form of causal descriptions, they can then be
directly translated into human-readable explanations of purpose
using text templates.

At this point, the description of a feature’s purpose would
be described in terms of two separate sets of causal-processes
representing the behaviors caused and prevented by the feature.
The resulting explanation would consist of a list of isolated pro-
cesses. To obtain a more complete explanation of purpose, it is

1 Copyright  2001 by ASME



necessary to identify any causal relationships that exist between
the individual processes. For example, a behavior caused by the
feature (desired behavior) might be preventing an undesired be-
havior that would have occurred in the absence of the feature.
Likewise, a desired behavior may occur precisely because a be-
havior prevented by the feature fails to occur. Identifying such
causal connections between observed and prevented behaviors
would clearly give us a better understanding of the feature’s pur-
pose. The challenge, however, is that the these kinds of causal
relationships often exist between processes fromdifferentsimu-
lations.1

The essential task is to determine if the presence or absence
of a process in one simulation affects the occurrence of a pro-
cess in a different simulation. Our approach to this task is to
examine the causal-processes in relation to the device’s configu-
ration space (c-space). A c-space describes the allowed motions
or kinematics of a device. As described in the following sections,
each causal-process can be mapped onto one or more segments
of the simulation trace in the c-space. By analyzing these traces,
we can determine if the presence of a causal-process in one sim-
ulation would geometrically prevent a particular process in the
other simulation.

The next section provides a brief overview of our causal-
process representation. We then explain the geometric reasoning
techniques we use to identify the causal relationships between
the processes of different simulations and show how the results
of this analysis are used to generate explanations of purpose.

Background: CAUSAL-PROCESS REPRESENTATION
To facilitate the comparison of two simulations, we have de-

veloped a representation that allows us to determine when two
mechanical behaviors are the same. (See [8] for a more complete
discussion of the representation.) We have found that mechanical
behaviors can be conveniently represented as “causal-processes”.
A causal-process represents an interaction in which one set of
bodies causes another set to do something. Both the behavior
and the causes of the behavior remain qualitatively uniform dur-
ing a causal-process. In mechanical devices, force causes (or
prevents) motion. Hence we identify the causes of behavior by
examining the flow of forces in the system.

Our representation of mechanical behavior consists of two
types of causal-processes: those that keep an object in motion
(dynamic processes) and those that keep an object in equilibrium
(static processes). Both types of causal-processes are represented
as acyclic, directed graphs in which the nodes represent bodies,
springs, external forces or fixed surfaces in the system, and the
arcs represent the causal relationships between the nodes. For

1Sometimes there are causal relationships between processes from the same
simulation. These can usually be handled in a more direct fashion through the fa-
cilities provided by our causal-process representation (specifically history lists).
The primary focus of this paper is reasoning about causality between simulations.

Figure 1. A 3-block system. F1 pushes block-A to the right. As A ad-

vances, it hits block-B and pushes it to the right. After F1 is turned off and

A returns to its initial position, F2 is applied to block-C. Because B has

been moved into C’s path, C collides with B and stops.

a dynamic process, an arc represents either one object causing
another to move, or an object causing a spring to store potential
energy. For a static process, arcs represent the interactions be-
tween the body in equilibrium and all of the objects that keep it
in equilibrium.

In addition to describing the instantaneous properties of be-
havior, causal-processes also capture the causal history leading to
the current processes by recording the list of all previous causal-
processes that carried a given part to its current location. For
a rigid-body to be involved in a causal-process, it must be in
the right location at the right time. The history leading up to
the current position of a body is thus one of the factors that en-
able the current process. Similarly, our representation records all
the previous causal-processes that caused a spring to store poten-
tial energy. This stored energy allows the spring to cause new
processes to occur. Having explicit records of past causal his-
tory allows our program to resolve ambiguities when comparing
seemingly similar behaviors: for two causal-processes to be the
same, the causal histories of the parts must be the same.

To illustrate our causal process representation, consider the
system of 3 rigid blocks shown in Figure 1. Our goal is to com-
pute the purpose of the triangular protrusion on block-A. In this
hypothetical device, A is pushed to the right by external force F1.
As A advances, it collides with B, causing B to move to the right.
When F1 is turned off, A returns to its original position, leaving
B at rest. Later, when F2 is applied to block-C, C strikes B and
comes to rest. If, however, the triangular feature is removed and
the experiment is repeated, C is no longer stopped by B, but in-
stead collides with the wall. Hence, (as we shall see below) the
purpose of the feature is to make A push B into C’s path so that
C strikes B instead of the wall.

Figure 2 shows the collection of causal-processes from
the nominal and modified simulations (the history lists are not

2 Copyright  2001 by ASME



Figure 2. Causal-processes of the nominal and modified simulations.

Processes highlighted with shaded boxes are the missing and extra pro-

cesses.

shown). To compare the two simulations, a processes of elimi-
nation is used to find those processes that are unique to one or
the other of the two simulations. Any processes that exist in both
simulations are pruned; the rest are the unique ones. Determin-
ing if a causal-process from one simulation is the same as one
from the other simulation is accomplished in the obvious way:
Two dynamic processes are the same if they embody the same
nodes connected with the same arcs, and the rigid-bodies and
springs on the causal path have the same history lists. Similarly,
two static processes match if the part in equilibrium and all the
forces keeping the part in equilibrium are the same. Again, the
rigid-bodies and springs that contribute to the equilibrium must
have the same history lists.

Taking the history lists into account and comparing the two
sets of causal processes, two processes unique to the nominal
simulation and one unique to the modified simulation are iden-
tified (highlighted in Figure 2). To facilitate discussion, we sep-
arate the set of unique processes thus obtained into two cate-
gories. Causal-processes that occur only in the nominal simula-
tion are called “missing processes” because when the geometry
of the device is modified (feature is removed), they no longer oc-
cur. Likewise, the processes unique to the modified simulation
are called “extra processes” because they do not ordinarily occur
unless the device is modified.

After identifying the missing and extra processes, our pro-
gram concludes that the triangular feature has three,separate
purposes: the feature allows A to push B, it allows C to strike B,

and it prevents C from striking the wall. We, however, know that
these three processes are causally connected. The first process (A
pushing B) enables the second (C and B in equilibrium), and pre-
vents the third (C and the wall in equilibrium). As described in
the next section, by detecting these kinds of causal connections
between processes, our program can generate a more complete
explanation of purpose, such as: “the feature allows A to push B
into C’s path, which prevents C from striking the wall.”

REASONING WITH C-SPACES
Our task at this point is to determine the causal relation-

ships between the missing and extra processes. The key question
is, does the presence of a particular missing process prevent the
occurrence of a given extra process? Or, alternatively does the
presence of a particular extra process prevent the occurrence of a
given missing process?

To answer this sort of question, it is necessary to relate pro-
cesses fromdifferentsimulations, because by definition, missing
processes and extra processes do not coexist in the same simula-
tion. This presents a significant challenge. For example, chronol-
ogy, which is often useful for examining causality, is of no use
because there is no way to reliably relate time in the two sim-
ulations – when the feature is removed, motions may be either
faster or slower and thus the time at which a particular behavior
occurs may change. Similarly, because the two processes may
involve different bodies, it is often not possible to examine the
history lists to determine if the two processes have any history in
common.

Our examination of the nature of causal-processes how-
ever, revealed that their spatial characteristics frequently provide
important information about how the individual behaviors are
achieved. For the class of devices we consider, the geometry
of the components and their relative locations in the device play
crucial roles in causing or preventing mechanical behaviors. For
instance, in the nominal simulation of the 3-block example (Fig-
ure 1), block-C strikes block-B precisely because block-A was
able to push B into C’s path. However, when the triangular fea-
ture is removed from A, i.e. its geometry is modified, C strikes
the wall instead, because now B fails to be at the “right location”
to obstruct C’s path.

In order to examine the link between geometry and behav-
ior, we examine the traces of the causal-processes through the
device’s configuration space (c-space). By doing so, we can de-
termine whether achieving a particular causal-process geometri-
cally prevents the existence of another process.

C-spaces
This section provides a brief overview of c-space. See [7]

for a more detailed discussion.
Configuration space is a representation that describes the al-

3 Copyright  2001 by ASME



Figure 3. C-spaces of the nominal and modified simulations of the 3-block example.

lowed motions (kinematics) of a device. The axes of a c-space
correspond to the position parameters of the bodies. The dimen-
sion of a c-space is thus equal to the number of degrees of free-
dom of the device. Because we restrict our attention to devices
with fixed-axis parts (each part rotates about a fixed axis or trans-
lates along a fixed axis), we can represent a multi-dimensional
c-space as a set of 2D projections, called configuration space
planes (cs-planes).

Figure 3a shows the cs-planes from the nominal simulation
of the 3-block example from Figure 1. Each cs-plane repre-
sents the interaction between a pair of fixed-axis bodies. The
curves (lines) shown in the cs-planes are called configuration
space curves (cs-curves). They represent the set of configura-
tions in which the surfaces of one body touch those of another.
The shaded region behind the cs-curves indicates blocked space,
configurations in which one body would penetrate another. The
unshaded region in front of the curves represents free space, con-
figurations in which the faces do not touch.

The motions of the bodies can be represented as sequences
of directed traces or “trajectories” through c-space. These can
be projected into the individual cs-planes. To facilitate the
causal analysis, we decompose the projections into monotonic

segments. Each segment represents a state of the device dur-
ing which the behaviors are uniform. However, by definition,
an individual causal-process also represents a behavior in which
the motion and its causes remain uniform. As a result, causal-
processes can be easily mapped onto the segments.

Frequently, multiple causal-processes occur simultaneously.
Thus, a given segment of the trajectory can correspond to mul-
tiple causal-processes. Furthermore, a given causal-process can
span more than a single segment. Consider for example the cs-
plane of blocks A and B in Figure 3a (top). The first causal pro-
cess to occur is F1 pushing A, and A compressing the spring.
This process spans the small vertical segment and the diagonal
segment. At the beginning of the diagonal segment, A begins to
push B. Thus, during the diagonal segment, there are two simul-
taneous processes: (1) F1 pushing A, compressing the spring,
and (2) F1 pushing A, pushing B.

For parts in equilibrium, the corresponding trace on the cs-
plane is a point. Hence, a static causal-process maps to a point
on the cs-plane.

Modifying the geometry of a component results in an alter-
ation of the cs-curves involving that component. For example,
removing the triangular feature from block-A precludes its inter-

4 Copyright  2001 by ASME



Figure 4. Cs-planes used in discussion of rule 1.

action with block-B. As shown in Figure 3b, this results in the
removal of the diagonal cs-curve from the cs-plane of blocks A
and B.

Computing Causal Relationships
In this section, we describe our rules for identifying the

causal relationships between a missing and an extra process. As
for notation, we use “M” to refer to a missing process, “E” for an
extra process, and “C” for a process common to the two simula-
tions. For sake of simplicity, we consider only the case in which
a missing process prevents an extra process. However, the rules
can be reversed in the obvious way to explore the converse case.

In our analysis, we distinguish between two types of miss-
ing processes: those that occur in free space and those that oc-
cur along a cs-curve. In the former case, to detect disablement,
we examine the missing process to see if it deflects the common
process such that the extra process is geometrically precluded. In
the latter case, we determine if the cs-curve on which the missing
process occurs, geometrically precludes the extra process. After
examining a number of problems, we reduced these two kinds
of analyses to a set of rules. The first two rules examine cases in
which M occurs in free space. The third examines cases in which
M occurs along a cs-curve.

Rule 1: “Given processes M, E and C: If 1) C is a dynamic
process, 2) E happens immediately after C in the modified simu-
lation, 3) M in the nominal simulation occurs during C, and 4)
C in the modified simulation passes through the point where M
begins in the nominal simulation, then M disables E. ”

The first rule considers the situation in which the common
process C was heading in the right direction for E to occur, but
M intervened and deflected the trajectory. There are several char-
acteristics that distinguish this situation. First, C must be a dy-
namic process, otherwise there would be no motion leading to
new causal processes. Second, in the modified simulation, C ul-
timately leads to E, but in the nominal simulation E does not oc-
cur. Third, C is diverted by M in the nominal simulation. Fourth,
C in the nominal simulation passes through the point at which M

Figure 5. Cs-planes used in discussion of rule 2.

begins in the nominal simulation. Thus, if M had occurred in the
modified simulation, it would have been able to deflect C. If all
of the characteristics are present, then there is good evidence that
M disables E.

To illustrate this rule, consider the hypothetical cs-planes
shown in Figure 4. Two missing processes, M1 and M2 occur
in the nominal simulation, whereas one extra process E occurs
in the modified simulation. As shown, M1 happening simul-
taneously with C temporarily diverts C’s upward trend. In the
modified simulation, however, C extends uninterruptedly and ul-
timately leads to E. Furthermore, C in the modified simulation
passes straight through the point where M1 would have begun
in the nominal simulation. In other words, if M1 had occurred
in the modified simulation, it would have diverted the trajectory
and prevented E. Hence, we conclude that M1 disables E.

Rule 2: “Given processes M, E and C: If 1) M is a dynamic
process, 2) M occurs immediately before C, 3) E occurs immedi-
ately after C, 4) C in the modified simulation begins at the point
at which M begins in the nominal simulation, then M disables E.”

In the previous rule, M intervenes in the middle of C and de-
flects it so that E is prevented. This rule, however, considers the
case in which M occurs immediately before C, but still deflects
C so that E does not occur. In this case, M is shifting C to a new
location so that E is prevented. The distinguishing characteristics
of this case are as follows. First, C must be a dynamic process,
otherwise there would be no motion leading to new causal pro-
cesses. Second, in the modified simulation, C leads to E, but in
the nominal simulation E does not occur. Third, C in the nominal
simulation begins at the end of M. Fourth, C in the modified sim-
ulation begins at the location at which M begins in the nominal
simulation. If all of the characteristics are present, there is good
evidence that M disables E.

Consider the cs-planes in Figure 5. The trajectories of both
simulations have reached the same pointp. In the modified sim-
ulation, process C begins at pointp and ultimately produces E.
However, M1 in the nominal simulation shifts C away from point
p to a new position, and as a result C no longer leads to E. Hence,

5 Copyright  2001 by ASME



Figure 6. Cs-planes used in discussion of rule 3.

we conclude that M1 disables E.
Rule 3: “Given two processes M and E, if removing pro-

cess M from the nominal simulation, together with the geometric
constraints that cause M, produces E, then M disables E.”

This rule considers the case in which M occurs along a cs-
curve. Frequently, the presence of a cs-curve in the nominal sim-
ulation may prevent an extra process E from occurring. This can
happen if the cs-curve causes M by either stopping2 or redirect-
ing a trajectory that would otherwise have lead to E. To deter-
mine if M disables E, we remove M together with the cs-curve on
which it occurs, and then extend the trajectory farther through the
cs-plane to “envision” the new processes that might subsequently
happen. The envisionment involves computing a set of processes
that are generated by the interaction of the extended trajectory
with the other cs-curves in the plane. If E is found among the
envisioned processes, then we have suggestive evidence that M
disables E.

Consider processes M, E1 and E2 in Figure 6. In the nominal
simulation, the vertical trajectory collides perpendicularly with
the horizontal cs-curve producing static process M. In the mod-
ified simulation, however, the horizontal cs-curve is absent and
E1 and E2 occur. To determine if M was preventing these extra
processes from occurring, we hypothetically remove M and the
horizontal cs-curve. We then predict the possible new processes
that might happen. In this imagined scenario, the path of the tra-
jectory would be cleared from obstacles and thus could extend
without obstruction until it collides with the diagonal cs-curve.
Upon collision, the trajectory would start following the diago-
nal cs-curve until reaching the vertical cs-curve, at which point
the trajectory’s further advance would be precluded. The new
processes created during this “envisioned” traversal resemble the
two extra processes: The segment of the trajectory following the
diagonal cs-curve is similar to dynamic process E1 because they
both occur along the same cs-curve with the same direction of
traversal. Likewise, the equilibrium process created at the end

2The trajectory will stop if it collides with a cs-curve perpendicularly, or if it
is entrapped between two cs-curves.

of the diagonal cs-curve is similar to E2 because they are both
static processes and involve the same cs-curves. As shown, E1
and E2couldhappen in the nominal simulation if process M and
the horizontal cs-curve were removed. From this, we have sug-
gestive evidence that M disables both E1 and E2.

This rule involves extending a trajectory and envisioning the
new processes that might subsequently occur. In extending the
trajectory we assume it continues to tend to move in the direc-
tion it was moving just prior to when M would have occurred.
If the extended trajectory strikes a new cs-curve, we assume it
is deflected by it. However, if the trajectory is perpendicular to
the new cs-curve, we assume the trajectory will stop. Similarly,
we assume the trajectory will stop if it reaches the intersection
of two cs-curves that could block the trajectory, such as the up-
side down “v” in Figure 6. This set of assumptions produces a
set of new processes that might plausibly occur. If the extra pro-
cess E is found among these envisioned processes, then we have
evidence that M could disable E. However, because the envision-
ment was based on a number of simplifying assumptions, even
if E is not contained in the set of envisioned processes, it is still
possible that M disables E. Conversely, finding E among the en-
visioned processes is not proof of disablement. Nevertheless, in
the sample problems we have examined, this rule did produce the
correct results.

The above rules consider direct causal relationships between
pairs of missing and extra processes. Sometimes there are addi-
tional indirect relationships between pairs of pairs. For example,
sometimes a missing process may be disabling an extra process
by causing another missing process that in turn disables the extra
process. In such situations, we deduce that the first missing pro-
cessindirectly disablesthe extra process. Similarly, there may be
indirect causal relationships between two missing processes (or
extra processes). For instance, a missing process mayindirectly
enablea future missing process by eliminating an extra process
that would have disabled it. To identify these indirect relation-
ships, we first apply rules1 – 3 todetect direct disablement. We
then examine the identified direct causal relationships to identify
any indirect relationships.

Rule 4: “Given processes M1, M2 and E: If M1 and M2
both disable E, and M1 occurs in the history list of M2, then M1
indirectly disables E by producing M2.”

This rule examines the situation in which a missing process
(M1) indirectly disables an extra process (E) through the assis-
tance of another missing process (M2). The issue here, is that
rules 1 – 3 cannot distinguish between direct and indirect dis-
ablement. Thus, if those rules determine that M1 and M2 each
individually disable E, it is still possible that one of them is indi-
rectly disabling E by causing the other. This can be determined
by examining the history lists of the two missing processes. Re-
call that a history list is the list of all causal-processes that lead

6 Copyright  2001 by ASME



to the occurrence of a particular causal-process.3 For example, if
the history list of M2 contains M1, then M1 is one of the causes
of M2. Thus, if M1 does not occur, neither will M2. However,
if M2 does not occur, the previous analysis with rules 1 – 3 in-
dicates that the extra process, E, will occur. Thus, M1 indirectly
disables E with the help of M2.

To illustrate this rule, consider once again the cs-planes in
Figure 5. Rule 2 determines that M1 disables E as explained pre-
viously. Similarly, rule 3 determines that M2 disables E. Addi-
tionally, the history list of M2 contains M1. This can be observed
by noting that M1 is part of the trajectory leading to M2. Thus,
according to the new rule, we can conclude that M1 indirectly
disables E by causing M2. An informal examination of the tra-
jectories in Figure 5 gives the intuition behind this rule. We see
that if M2 did not occur (i.e., the short cs-curve were removed)
then E would still occur, even if M1 occurs. E would simply oc-
cur at a different location on the same cs-curve. Thus, M1 alone
does not disable E. It does so indirectly by causing M2.

Rule 5: “Given processes M1, M2 and E: If M1 disables E,
and E disables M2, then M1 indirectly enables M2 by disabling
E.”

Our final rule examines indirect enablement. If a missing
process M1 disables an extra process E, and E disables another
missing process M2, then we can conclude that M1 indirectly
enables M2 by disabling E. Note that this kind of indirect en-
ablement cannot be identified by examining M2’s history list:
Because M1 does not directly cause M2, it will not appear in the
list.

The cs-planes shown in Figure 4 provide an example of this
case. Using rule 1, we previously determined that M1 disables
E. By applying rule 3 in the reverse direction (i.e., considering
the case in which an extra process disables a missing one), we
can determine that E disables M2. From this, we conclude that
M1 indirectly enables M2 by preventing E from happening. In
this case, however, M1 is also a direct cause of M2 because M1
is in the history list of M2 (i.e., M1 is on the trajectory leading to
M2).

Returning to our 3-block example, we can now determine
how the previously identified missing and extra processes are re-
lated to each other. The first missing process was [F1 pushing A
pushing B] and the second was [C in equilibrium at B]. The only
extra process was [C in equilibrium at the wall]. These processes
are encircled with dashed lines in Figure 3. From the second
rule, we determine that the process [F1 pushing A pushing B]
disables the process [C in equilibrium at the wall]. Similarly,
from the third rule, the process [C in equilibrium at B] disables
[C in equilibrium at the wall]. Note that both missing processes
individually disable the extra process. Additionally, the history
list of the second missing process contains the first missing pro-
cess. This can be observed by noting that the first missing pro-

3See [8] for a complete discussion of history lists.

cess is on the trajectory leading to the second. Therefore, from
the fourth rule we can conclude that [F1 pushing A pushing B]
indirectly disables[C in equilibrium at the wall] by causing [C in
equilibrium at B]. With appropriate text generation facilities, this
could be translated into: “the feature prevents C from coming to
rest on the wall by enabling A to push B so that C comes to rest
on B.”

RELATED WORK
ExplainIT-II builds upon a previous system called ExplainIT

[9]. Although the idea of comparing simulations and identifying
the differences is common to both systems, there are a number
of significant differences between them. The previous approach
directly compared the two simulations to identify the first “sig-
nificant” difference. In order to determine purpose, the system
then performed a causal analysis of the differing behaviors. In
ExplainIT-II, however, we perform causal analysis prior to com-
paring the two simulations. One of the primary advantages of
this new approach is that it allows us to accurately identify when
behaviors are the same, even when they occur in different or-
ders in the two simulations. This new capability is essential for
analyzing more complicated devices including those with cyclic
behavior.

Design rationales are descriptions of why a design was
designed the way it was. The descriptions of purpose that
ExplainIT-II computes are one form of design rationale. There
is a large and growing body of work in design rationale capture
and construction. [1] and [4] offer good overviews to this work.
However, much of that work is focused on tools for managing
documentation that is human generated whereas our work aims
to automatically compute documentation.

David Franke [3] has devised a language called Ted for rep-
resenting teleological descriptions. Purposes of components are
expressed in terms of behaviors prevented, guaranteed or intro-
duced by particular components. This work is similar to ours in
that it identifies the purpose of a component by examining the
behaviors it adds to or removes from a system. However, Ted
requires the user to enumerate both the desirable and undesirable
behaviors of the device. Our program, on the other hand, iden-
tifies purpose by comparing two simulations of the device. In
our study, we also address the question of “how” the component
performs its identified purpose by generating text descriptions of
the causal processes that are computed as differences.

There has been some previous work in trying to “under-
stand” the behaviors of mechanisms. Forbuset. al. [2] describe
a system that produces descriptions of the motions of the parts of
a device. They decompose the device’s configuration space into
regions of uniform contact called “places,” producing a “place
vocabulary” for the device. They generate a description of the
device’s behavior by enumerating the sequence of places that are
visited when the external inputs are applied to the device. Sacks

7 Copyright  2001 by ASME



and Joskowicz [5] describe a similar system that partitions con-
figuration space into a region diagram rather than a place vocab-
ulary. These systems produce descriptions of what happens but
do not derive causal relationships. Thus they do not provide ex-
planations for why things happen.

Stahovichet. al. [6] describe a system for computing quali-
tative rigid-body dynamic simulations. That system uses a quali-
tative version of Newton’s laws that are similar to the techniques
used here for tracking the flow of causality through a device.

DISCUSSION AND CONCLUSION
Our work concerns the task of “purpose recognition.” To

compute the purpose of a geometric feature on a part, we simu-
late the behavior of the device with and without that feature. We
then translate the two simulations into a “causal-process” repre-
sentation and identify processes that exist in one simulation but
not the other. Any such processes are indicative of the feature’s
purpose. This analysis results in a list of isolated behaviors that
the feature either causes or prevents.

The focus of the current work is on identifying causal con-
nections between the behaviors the feature causes and those it
prevents. The sort of question we are trying to answer is: “does
the feature cause one behavior to occur by preventing another
from happening or vice versa?” Identifying these sorts of causal
relationships allows us to construct more complete explanations
of purpose. The difficulty is that identifying these relationships
requires reasoning about why thingsdo nothappen. Most causal
reasoning techniques address the converse problem of why things
do happen. Our approach to the problem is to augment causal
reasoning with geometric reasoning. To determine if one process
is preventing another from occurring, we use geometric analysis
to determine if the former geometrically precludes the latter.

At the present, we consider the results of our analysis to
be suggestive evidence of disablement (and enablement) rather
than a rigorous proof. More experimentation will be necessary
to determine the accuracy of our rules. Additionally, our rules are
fairly general in that they cover the two categories of missing pro-
cesses: those that occur in free space and those that occur along
a cs-curve. As we examine more complicated devices, we will
likely encounter the need for additional rules. However, based
on our current experience, we expect that we will need only a
handful of additional rules.

We have fully implemented all of our rules in software,
which we tested on a small set of example problems. The ex-
ample presented here (Figure 1) was the simplest of the set; the
others were moderately more complex. In all cases, our program
successfully identified the correct causal relationships. Our work
is clearly at an early stage. However, our current results suggest
that geometric reasoning is a powerful tool for generating causal
explanations of mechanical behavior.

Acknowledgements
This work has been supported by the National Science Foun-

dation under Award Number 9813259.

REFERENCES
[1] Paul Chung and Ren´e Bañares-Alcántara Editors. Special

issue: Representation and use of design rationale.Artificial
Intelligence for Engineering Design, Analysis, and Manu-
facturing, 11(2), 1997.

[2] Ken D. Forbus, Paul Nielsen, and Boi Faltings. Qualitative
spatial reasoning: The clock project.Artificial Intelligence,
51(9), 1991.

[3] David W. Franke. Deriving and using descriptions of pur-
pose.IEEE Expert, pages 41–47, April 1991.

[4] Thomas Gruber, Catherine Baudin, John Boose, and Jay We-
ber. Design rationale capture as knowledge acquisition trade-
offs in the design of interactive tools. Technical Report KSL
91-47, Stanford University, Knowledge Systems Laboratory,
1991.

[5] Elisha Sacks and Leo Joskowicz. Automated modeling and
kinematic simulation of mechanisms.Computer-Aided De-
sign, 25(2):106–118, February 1993.

[6] Thomas F. Stahovich, Randall Davis, and Howard Shrobe.
Qualitative rigid body mechanics. InProceedings of the
Fourteenth National Conference on Artificial Intelligence,
1997.

[7] Thomas F. Stahovich, Randall Davis, and Howard Shrobe.
Generating multiple new designs from a sketch.Artificial
Intelligence, 104(1–2):211–264, October 1998.

[8] Thomas F. Stahovich and Levent Burak Kara. A represen-
tation for comparing simulations and computing the purpose
of geometric features.AIEDAM, 2001. in press.

[9] Thomas F. Stahovich and Anand Raghavan. Computing de-
sign rationales by interpreting simulations.ASME Journal of
Mechanical Design, 122(1):77–82, 2000.

8 Copyright  2001 by ASME


