
TURNING SKETCHES INTO WORKING GEOMETRY

Thomas F. Stahovich, Randall Davis, Howard Shrobe1

Artificial Intelligence Laboratory
Massachussets Institute of Technology

Cambridge, Massachusetts

ASME Design Theory and Methodology 1995, pp. 603 – 611.

ABSTRACT
We describe a program called SketchIT that uses a descrip-
tion of desired behavior to transform a sketch of a mechanical
device into a “BEP-Model,” a parametric model with con-
straints that ensure the device produces the desired behav-
ior. The program also generates alternative implementations
for the design, each of which is represented as a BEP-Model.
The program is based on qualitative configuration space, a
novel representation for mechanical behavior.

INTRODUCTION
A common task in mechanical design is the search for compo-
nent geometries that will provide a desired behavior. Para-
metric modelers are often useful in this search because they
provide a convenient means for modifying geometry. How-
ever, the designer is still responsible for creating the para-
metric model in the first place, then for deciding what
changes to make.
We are developing SketchIT, an intelligent design assis-
tant that assists the designer in finding a geometry that pro-
vides a specified behavior.2 Our program uses a description
of desired behavior to transform a sketch of a mechanical
device into a “BEP-Model,” a parametric model with con-
straints that ensure the geometry produces the desired be-
havior. The program also generates alternative implementa-
tions for the design, each of which is represented as a BEP-
Model. We use DesignView3 to evaluate the BEP-Models

1Support for this project was provided by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval
Research contract N00014-91-J-4038.
2See Stahovich (1995) for a more complete description of this work.
3DesignView is a commercial parametric modeler based on varia-
tional geometry.

produced by our program.

The constraints in each BEP-Model represent the regions
in parameter space (i.e., the space spanned by the geometric
parameters) that provide the desired behavior. Thus they
define a family of design solutions which the designer can
explore in order to satisfy other design requirements, such
as requirements on size or cost.

We have tested the program on two design problems: a
mechanical circuit breaker and the firing mechanism from a
single action revolver. We believe the program is applica-
ble to a wide class of devices described in the future work
section.

Our techniques can be viewed as a natural complement
to both bond graph based design techniques and the well
known design techniques for fixed topology mechanisms.

In this paper we use the design of a circuit breaker to illus-
trate the program’s operation. One specific implementation
of the device is shown in Figure 1a. In normal use, current
flows from the lever to the hook; current overload causes the
bimetallic hook to heat and bend, releasing the lever and
interrupting the current flow. After the hook cools, pressing
and releasing the pushrod resets the device.

The designer describes the circuit breaker to SketchIT
with the stylized sketch shown in Figure 1b. Because
SketchIT is concerned only with the functional geometry,
i.e., the faces where parts meet and through which force and
motion are transmitted (lines f1 through f8), the designer’s
task is to indicate which pairs of faces are intended to en-
gage each other. Consideration of the connective geometry
(the surfaces that connect the functional geometry to make
complete solids) is put off until later in the design process.

The designer describes the desired behavior of a device
to SketchIT using a state transition diagram (figure 2b).
Each node in the diagram is a list of the pairs of faces that



(a) (b)

f1

f2 f3

f4 f5

f6 f7 f8

actuatorpushrod

lever

hook: bimetallic strip

pushrod stop
engagement
pairs:
f1 - f6
f2 - f5
f3 - f4
f7 - f8

Figure 1: (a) One structure for the circuit breaker. (b) Sketch
of circuit breaker as actually input to program. Engagement
faces are in bold. The actuator applied to the pushrod repre-
sents the motion imparted by the user. For our convince we
use labels to refer to engagement pairs: (f1 f6)=push-pair, (f2
f5)=cam-follower, (f3 f4)=lever-stop, (f7 f8)=pushrod-stop.

are engaged and the springs that are relaxed. (The pairs
of faces not listed at a node are by default disengaged, the
springs not listed are by default not relaxed.) The arcs are
the external inputs that drive the device. Figure 2b, for
instance, describes how the circuit breaker should behave in
the face of heating and cooling the hook and pressing the
reset pushrod.

Hook
Cools

Hook
Heats

Reset

1 2

3 Hook
CoolsReset

push-pair
pushrod-stop

hook=cold
(b)(a)

Hook
Heatslever-stop

pushrod-stop
hook=cold

push-pair
pushrod-stop

hook=hot
1 2

3

Figure 2: The desired behavior of the circuit breaker. (a)
Physical interpretation. (b) State transition diagram. In each
of the three states, the hook is either at its hot or cold neutral
position.

Figure 3 shows a portion of one of the BEP-models
SketchIT derives from the sketch of the circuit breaker
(Figure 1b) and the desired behavior (Figure 2b). The top of
the figure shows the parameters that define the sloped faces
on the lever and the hook (faces f2 and f5 respectively).
The bottom shows the constraints that ensure this pair of
faces plays its role in achieving the overall desired behavior:
moving the lever clockwise pushes the hook down until the
lever moves past the point of the hook, whereupon the hook
springs back to its rest position. As one example, the ninth
equation, 0 > R14/TAN(PSI17) + H2 12/SIN(PSI17), con-
strains the geometric parameters so that the contact point on
face f2 never moves tangent to face f5. This in turn ensures
that when the two faces are engaged, clockwise rotation of
the lever always increases the deflection of the hook.
The particular parameter values in the top of Figure 3 were
computed by DesignView as solutions to the constraints of

R14 2.831

L15 0.142

S13 2.728

PSI17 134.782

H1_11 0.101
H2_12 0.041

PHI16 135.013

H1_11 > 0 H2_12 > 0 S13 > H1_11

L15 > 0 PHI16 > 90 PHI16 < 180

PSI17 > 90 PSI17 < 180

0 > R14/TAN(PSI17) + H2_12/SIN(PSI17)

R14 = SQRT(S13^2 + L15^2 - 2*S13*L15*COS(PHI16))

Figure 3: Output from the program. Top: the parametric
model; the decimal number next to each parameter is the cur-
rent value of that parameter. Bottom: the constraints on the
parameters. For clarity, only the parameters and constraints
for faces f2 and f5 are shown.

the BEP-Model, and thus, this particular geometry provides
the desired behavior.4 Using DesignView, we can easily ex-
plore the family of designs defined by this BEP-Model. For
example, Figure 4 shows another solution to the BEP-Model
computed with DesignView. Because these parameter values
satisfy the constraints of the BEP-Model, even this rather
unusual geometry provides the desired behavior. As this
example illustrates, the family of designs defined by a BEP-
Model includes a wide range of design solutions, many of
which would not be obtained with conventional approaches.
SketchIT also produces two kinds of design variants. One
kind of variant is obtained by using a different implemen-
tation for a pair of engagement faces. Figure 5 shows an
example: In the original implementation of the cam-follower
engagement pair, the motion of face f2 is roughly perpendic-
ular to the motion of face f5; in the new design of Figure 5,
the motions are parallel. Conversely, the motions of faces f1
and f6, originally parallel, are now perpendicular.
SketchIT produces a second type of variant by changing
rotating parts to translating ones, and vice versa. Figure 6
shows an example in which SketchIT replaces the rotating
lever in Figure 1 with a translating part.
For each set of choices for the motion types (rotation or
translation) of the components, the program may have sev-
eral ways to implement each engagement pair; each variant
of the second type has its own variants of the first type.
For the circuit breaker example the program currently gen-
erates 5 qualitatively distinct designs (shown in this paper);
with very minor additions the program will produce a total
of 13 distinct designs.

4We currently transfer the parametric geometry and constraints of
the BEP-Model to DesignView manually; this can easily be accom-
plished automatically using DesignView’s macro language.



f2
f3

f4

f5

f6
f7 f8

f1

Figure 4: Another solution to the BEP-Model of Figure 3.
Shading indicates how the faces might be connected to flesh
out the components. This solution shows that the pair of faces
at the end of the lever and the pair of faces at the end of the
hook need not be contiguous.

hook

cam-follower
lever-stop

lever
pivot

pushrod

pushrod-stop

push-pair

}

}

}{

Figure 5: A design variant obtained by using different im-
plementations for the engagement faces. The pushrod is
pressed so that the hook is just on the verge of latching the
lever.

THE REPRESENTATION

Qualitative c-space

Before SketchIT can compute the constraints on the ge-
ometry, it must determine what role each piece of geometry
plays in achieving the desired overall behavior. This task is
made difficult by the fact that sketches of conceptual designs
are often incomplete and incorrect.

Sketches are incomplete in the sense that details are miss-
ing: a sketch may depict something about the kind of imple-
mentation the designer wants to use, rather than a specific,
working implementation (e.g., the designer may want a cam
and follower, but not necessarily with the exact dimensions
and shapes shown in the sketch). A sketch can be incorrect
in the sense that it contains a collection of fragments that
implement pieces of the design, but those individual pieces
do not produce the desired overall behavior.

Our first step in dealing with this problem was to use
configuration space (c-space) because it represents the in-
teraction between two parts rather than the shapes of the

hook

lever

pushrod

Figure 6: A design variant obtained by replacing the rotating
lever with a translating part.

parts.5 In so doing it allows us to move from representing
shape to representing behavior.
Because the devices we are interested in are fixed axis,6

the c-space for a pair of interacting parts is a plane, called
a cs-plane, and the interaction of a pair of faces is a curve
in the cs-plane (a cs-curve). In the same way that a solid
has an inside and an outside, a cs-curve has a front and
back. The back side is called blocked space, and represents
configurations of the parts which would cause one part to
penetrate the surface of the other.7

Each cs-curve represents a family of shapes (i.e., a fam-
ily of interacting faces) that all produce the same behavior.
However, we can identify a much larger family of shapes
that produce the same behavior by abstracting the numer-
ical cs-curves to obtain a qualitative c-space. In qualitative
c-space (qc-space) we represent cs-curves by their qualita-
tive slopes and the locations of the curves relative to one
another. By qualitative slope we mean the obvious notion
of labeling monotonic curves as diagonal, vertical, or hori-
zontal; by relative location we mean relative location of the
end points.8

This representation is useful because the qualitative slope
of a cs-curve is an indicator of the behavior of the corre-
sponding interaction. A cs-curve that is vertical or horizon-
tal, for example, indicates what we call “stop behavior,” in
which the extent of motion of one part is limited by the posi-
tion of another. A diagonal cs-curve indicates an interaction
in which one part pushes the other.
The key, more general, insight here is that if the cs-
curves are monotonic, the first order dynamics of the de-
vice are completely determined by the qualitative slopes of
the cs-curves and the locations of the cs-curves relative to
one another. By first order dynamics we mean the dy-
namic behavior obtained when the motion is assumed to
be inertia-free and the collisions are assumed to be inelastic

5See, for example, Caine (1993).
6Fixed axis devices are composed of components that either translate
along a fixed axis or rotate about a fixed axis (i.e., single degree of
freedom components).
7For the most part, interactions between two finite surfaces produce
cs-curves with finite extent. Each spring neutral position and actuator
limit contributes an infinite boundary to c-space, as does each engage-
ment pair in which one body is ground. Thus, a cs-plane contains both
cs-curves and infinite boundaries. For shorthand convenience we refer
to both of these together as cs-curves.
8We assume that all interactions have monotonic cs-curves.



ca
m

-fo
llo

w
er

le
ve

r-
sp

rin
g

hook=hot

hook=cold

le
ve

r-
st

op

Lever Angle

Hook
Position

Pushrod
Position

Lever Angle

le
ve

r-
sp

rin
g

motion limit

pushrod-stop

pushrod-spring

push-pair

Figure 7: Qualitative c-space from Figure 1. For drawing
convenience, qcs-curves are shown as straight line segments;
they can have any shape as long as they are monotonic.
Neutral positions of springs, limits of actuator movement, and
interactions with the ground body (e.g., the pushrod-stop) are
all shown as dashed infinite lines.

and frictionless.9 The consequence of this general insight is
that qc-space captures all of the relevant physics, and hence
serves as a design space for behavior. It is a particularly
convenient design space because it has only two properties:
qualitative slopes and relative locations.
SketchIT uses generate and test to identify the role each
pair of engagement faces plays in achieving the desired over-
all behavior. It computes the numerical c-space from the
sketch, abstracts this into a qualitative c-space representa-
tion, and then uses qualitative simulation to test if that qc-
space provides the specified behavior.
If qualitative simulation demonstrates that this qc-space
does produce the correct behavior, we are done with this
step. If not, SketchIT uses this initial guess as the start-
ing point in a search for a working qc-space. SketchIT
tries new choices for the relative locations of the qualitative
cs-curves (qcs-curves) until it finds an arrangement that pro-
duces the desired behavior. If this fails, SketchIT will (in
the future) also try other choices for the slopes of the qcs-
curves (this is not implemented as of this writing, but is
a straightforward extension in progress). If SketchIT still
cannot find a qc-space that produces the correct behavior,
the conceptual design is not capable of producing one.
Figure 7 shows the qualitative c-space abstracted from the
numerical c-space of the sketch in Figure 1b.

Searching qc-space
The brute force approach—exhaustively enumerating all
possible values for the location and slope of each qcs-curve—
is clearly impractical in any non-trivial design task. As a re-

9“Inertia-free” refers to the circumstance in which the inertia terms
in the equations of motion are negligible compared to the other terms.
One important property of inertia-free motion is that there are no
oscillations. This set of physical assumptions is also called quasi-
statics.

sult we have identified two sources of knowledge that allow
us to prune the search space: we use knowledge about the
mapping from the sketch to qc-space and knowledge about
trajectories in qc-space.10

Mapping the sketch to qc-space. There are circum-
stances in which small variations in the geometry of the
sketch produce qualitative changes in the behavior. When
SketchIT detects these conditions, it asks the designer
about his or her intent.
One such set of circumstances occurs when a numerical cs-
curve is nearly vertical or nearly horizontal. If the cs-curve
really is vertical or horizontal, the interaction produces stop
behavior; but if the cs-curve really is sloped, the interaction
produces pushing behavior (i.e., one part pushes the other).
A small change in the slope of the cs-curve thus produces a
large change in behavior. When SketchIT identifies a nu-
merical cs-curve that is nearly vertical or nearly horizontal,
it asks the designer if the interaction is intended to provide
stop behavior.
Another set of circumstances occurs when the end points
of two numerical cs-curves are coincident (or nearly so). This
is likely to have been intentional, because it corresponds to
a common and useful piece of behavior: if two cs-curves
connect end to end, the device can slip from one engage-
ment pair to the next with no disengagement in between.
Hence if two numerical cs-curves (nearly) connect end to end
SketchIT asks the designer if a smooth transition between
engagement pairs was intended.
The “V” in the left of Figure 7 illustrates the use of these
questions in the circuit breaker example. SketchIT notices
that the cs-curve for the lever-stop engagement pair is nearly
vertical and asks if we intended stop behavior; in this case
we did. SketchIT then asks if the end points of the lever
stop cs-curve and the cam-follower cs-curve are intended to
be coincident; again they are, in order to allow the device to
slip from one pair of engagement faces to the other without
disengaging. Finally, SketchIT notices that the other ends
of the two cs-curves have a coordinate in common and asks
us if this was intended, but this is just coincidental. The
“V” in the figure reflects the answers to these questions.

Knowledge about trajectories in qc-space. The desired
behavior of a mechanical device can be described by a path
through its c-space, hence the topology of the c-space can
have a strong influence on whether the desired path (and
hence the desired behavior) is easy, or even possible. This is
equally true in the qc-space.
We are exploring the use of (but have not yet imple-
mented) debugging rules that examine why a particular qc-
space fails to produce the correct behavior, based on its
topology. The qc-space may, for example, contain a funnel-
like topology that “traps” the device, preventing it from
traversing the desired path. If we can diagnose these kinds

10As a consequence we have focused on creating this more informed
generator and have not built an exhaustive generator.



actuator

A B C

Figure 8: The three blocks slide along a frictionless horizontal
surface. The spring pushes block A to the right, the actuator
pushes block C to the left.

of failures to produce the desired behavior, we may be able
to generate a new qc-space by judicious repair of the current
one.

DYNAMIC SIMULATION
We use qualitative simulation to test the behavior of each
qualitative c-space. SketchIT begins by identifying the
forces on each body, and then uses a qualitative version of
Newton’s laws to compute the motion of each body. That
motion continues until some event (e.g., a collision) changes
the nature of the forces. At this point SketchIT stops,
recomputes the forces, and then continues simulating. Be-
cause this is a qualitative simulation, ambiguities can arise
concerning what will happen next; our simulator determines
all possible sequences of events.

Computing Motion
With the Newtonian formulation of the equations of motion
one begins by drawing a free-body diagram for each body, us-
ing force vectors to replace all of the engagements from other
bodies. Newton’s laws then produce a system of algebraic
and differential equations relating the sum of the forces to
the time rate of change of the momentum of the body. The
solution to this system of equations contains values for the
forces and the motion of the body.
Unfortunately, the Newtonian formulation does not work
as easily with a qualitative representation. If we simply used
qualitative versions of the engagement force vectors, there
would be a significant amount of ambiguity in the force sums.
Instead we represent each engagement by the type of con-
straint it applies to the body. Consider, for example, the
three blocks in Figure 8. The spring pushes block A to the
right, the actuator pushes block C to the left. In SketchIT’s
world, all actuators are assumed to be motion sources, that
is, they assign position as a function of time. Block B, the
block in the middle, experiences two engagement forces, one
from A and one from C. Because the forces are in opposite
directions, the qualitative sum of these forces is ambiguous.
However, we know that B will move to the left. Why is
this? We know that the force C applies to B is whatever force
is necessary for C to achieve its assigned motion. We call
this kind of engagement a “motion constrained engagement”
because it constrains the motion of the body to which it
is applied. We can think of this kind of engagement as a
kinematic constraint.
The spring’s deflection determines the spring’s force on A.
In an inertia-free world, A will transmit the spring force to B.
Thus, A applies a known force to B. In contrast to a motion

constrained engagement which assigns motion, this kind of
engagement assigns force. We call this kind of engagement a
“compliant engagement” because it assigns force in the same
way that a compliant member (e.g., a spring) does.

One of our basic principles is that a motion constrained
engagement overpowers a compliant engagement. Hence, be-
cause there is a motion constrained engagement pushing B
to the left and a compliant engagement pushing B to the
right, B must move to the left.

Another basic principle is that, because we are restricting
our attention to fixed axis bodies, the only component of
a force that has any effect on the motion of a body is the
projection of the force along the degree of freedom of the
body. By reasoning about the projection of a force, rather
than the whole force, SketchIT can substantially reduce
ambiguity in force sums.

In an inertia free world, the motion of a body is in the
direction of the net force. Hence, SketchIT determines the
motion of a body by determining the net force on the body.

Events
Because the motion of a rigid body depends on the applied
forces, the motion changes when there is a change in the
nature of the forces. There are four kinds of events that can
change the nature of the forces: an engagement is broken,
an engagement is made, a spring passes through its neutral
position, or an actuator reaches its limit. The first kind of
event occurs when a trajectory in qc-space following a qcs-
curve reaches the end of that curve; the other kinds of events
occur when the trajectory hits a new curve.

To determine which kind of event will happen next,
SketchIT examines the qc-space diagram. If the motion
of a body in a qualitative cs-plane (qcs-plane) is along an
engaged qcs-curve, or is horizontal or vertical, SketchIT
can simply look along the trajectory to see what is reached
first: a new qcs-curve or the end of the engaged qcs-curve.

If the motion is diagonal and does not follow a qcs-curve,
we have to solve a geometric reasoning task in order to de-
termine what event happens next. In our world the mo-
tion of every rigid body will remain either strictly positive,
strictly negative, or zero over a time step, hence trajectories
in qc-space will be monotonic. Thus, SketchIT’s task is to
find all of the qcs-curves that can be reached with a given
monotonic trajectory. If there is a continuous chain of qcs-
curves that block the trajectory, such as the chain composed
of the lever-stop and the “hook=cold” qcs-curves in Figure
9, we can be certain that the trajectory will not reach any
qcs-curve outside the chain (i.e., outside the shaded region).
The qcs-curves composing the chain and any qcs-curves in-
side the chain (i.e., inside the shaded region) can be reached.

Because the qc-space is a multi-dimensional space, the
trajectory through each qcs-plane is a two-dimensional pro-
jection of the trajectory through the qc-space. However
we want to know the actual trajectory, i.e., the trajec-
tory through the full multi-dimensional space. To do this
SketchIT uses constraint propagation to reassemble the full
trajectory from the projections and thus determine which of



ca
m

-fo
llo

w
er

le
ve

r-
sp

rin
g

hook=hot

hook=coldle
ve

r-
st

op

Lever Angle

Hook
Position

Figure 9: A diagonal trajectory in the qcs-plane.

the events predicted by the individual planes can happen
first. SketchIT may find, for example, that the trajectory
reaches an event in one qcs-plane before it reaches an event
in any of the other qcs-planes.11

CONSTRUCTING BEP-MODELS
Once SketchIT has a qc-space that produces the desired
behavior, it constructs a BEP-Model by mapping the qcs-
curves to a library of implementations. Figure 10 shows all
possible types of qcs-curves. Because there are eight types,
and the coordinates q1 and q2 can be either rotation or trans-
lation, we need a library capable of implementing 32 different
types of interactions.

q1

q2

A B C D E F G H

Figure 10: For drawing convenience, qcs-curves are shown
as straight line segments; they can have any shape as long
as they are monotonic.

Each library entry contains a parameterized drawing and a
set of constraints that ensure that the geometry implements
a monotonic cs-curve of a particular slope. We chose mono-
tonic cs-curves because they ensure that the behavior will be
as predicted by the simulator.12 Because the qc-space places
constraints on the relative locations of the qcs-curves, each
library entry also contains algebraic expressions for the end
points of the cs-curve that the geometry implements.
For example, Figure 11 shows a library entry for qcs-curve
H in Figure 10, for the case in which q1 is rotation and q2
is translation (i.e., rotation in the negative direction causes
translation in the positive direction). For the corresponding
qcs-curve to be monotonic and have the correct slope, the

11There may be several possible next events. For example, in Figure
9, there are two possible next events: the lever could reach the hook,
or the hook could reach its neutral position. When there is more that
one next event, the simulator considers all possibilities.
12There may be other types of solutions, but we do not look for them.

ψ

θ

φ
r

s

L

h

w

x

Figure 11: The two faces are shown as thick lines. The rotat-
ing face rotates about the origin; the translating face translates
horizontally. θ is the angle of the rotor and x is the position of
the slider

following ten constraints must be satisfied:

w > 0 L > 0 h > 0
s < h r > h π/2 < φ ≤ π
ψ > 0 ψ < arcsin(h/r) + π/2

arccos(h/r) + arccos(L
2+r2−s2

2Lr
) < π/2

r = (s2 + L2 − 2sL cos(φ))1/2

The end points of the corresponding cs-curve are defined
as:
θ1 = arcsin(h/r) x1 = r cos(θ1)
θ2 = π − arcsin(h/r) x2 = r cos(θ2)

ψ
θ

φr

s

L

h1

x h2

Figure 12: The two faces are shown as thick lines. The rotat-
ing face rotates about the origin; the translating face translates
horizontally. θ is the angle of the rotor and x is the position of
the slider

Figure 12 shows a second implementation for qcs-curve H,
with constraints:
h1 > 0 h2 > 0
s > h1 L > 0
π/2 < φ < π π/2 < ψ < π

0 > r/ tan(ψ) + h2/ sin(ψ) r = (s2 + L2 − 2sL cos(φ))1/2

The end points of the corresponding cs-curve are given by:

θ1 = − arcsin(h2/r)
x1 = r cos(θ1)− h2/ tan(ψ)

θ2 = arcsin(h1/s) + arccos(
s2+r2−L2

2sr
)

x2 = s cos(arcsin(h1/s)) + h1/ tan(ψ)

The slider in Figure 11 does not pass through the pivot
but the one in Figure 12 does. In the first design the mo-
tion of the slider is approximately parallel to the motion of
the rotor, while in the second the motion of the slider is ap-
proximately perpendicular to the motion of the rotor.13 The
two designs thus represent qualitatively different implemen-
tations for the same qcs-curve.

13The first design is a cam with offset follower, the second is a cam
with centered follower.



To generate the BEP-Model for the sketch, we select an
implementation for each qcs-curve from the library. For each
selection we create a new instance of the parameters and
transform the coordinate systems to match those used by
the actual components. Interactions with ground, such as
the pushrod-stop in Figure 1b, are handled in a similar way.
The locations of the qcs-curves in the qc-space are turned
into constraints on the end points of the qcs-curves. Figure
3 (bottom of figure) shows the algebra SketchIT generates
when the cam-follower of the circuit breaker is implemented
with the geometry from figure 12.
Our library contains implementations that use flat faces.14

We have at least one implementation for each of the 32 kinds
of interactions shown in Figure 10. We have begun work on
implementations using circular faces.

DESIGN VARIANTS
One of the ways that SketchIT generates design variants is
by selecting different implementations for a qcs-curve. For
example, SketchIT created two designs for the cam-follower
interaction of the circuit breaker by using the two implemen-
tations shown in Figures 11 and 12. SketchIT creates two
designs for the push-pair in the same way. With two imple-
mentations for each of two interactions, SketchIT was able
to create four of its design variants for the circuit breaker
(Figure 5 shows one of the four).
SketchIT also generates design variants by changing the
motion type of a component from translation to rotation
(or vice versa). If we assume that components rotate less
the a full revolution, changing the motion type does not
change the qualitative c-space, thus the behavior computed
by the simulator is still valid.15 When SketchIT selects
geometric implementations from the library, it simply selects
entries that match the particular choices of motion types.
For example, by changing the lever of the circuit breaker
from a rotor to a slider, SketchIT generates the design
shown in Figure 6.

RELATED WORK
Our techniques can be viewed as a natural complement to
the bond graph techniques of the sort developed by Ulrich
(1988). Our techniques are useful for computing geometry
that provides a specified behavior, but because of the inertia-
free assumption employed by our simulator, our techniques
are effectively blind to energy flow. Bond graph techniques,
on the other hand, explicitly represent energy flow but are
incapable of representing geometry.
Our techniques focus on the geometry of devices which
have time varying engagements (i.e., variable kinematic
topology). Therefore, our techniques are complementary to

14Circular faces are used when rotors act as stops.
15If parts rotate through a full revolution, qc-space must have periodic
boundary conditions. For example, the qcs-plane for the interaction
between a rotating component and translating component becomes a
cylinder. Hence, we would not be able to replace rotating parts with
translating ones.

the well know design techniques for fixed topology mecha-
nisms, such as the gear train and linkage design techniques
in Erdman and Sandor (1984).

There has been a lot of recent interest in automating the
design of fixed topology devices. A common task is the syn-
thesis of a device which transforms a specified input motion
to a specified output motion: Kota and Chiou (1992) use
a matrix to represent the desired motion transformation,
then use matrix decomposition to decompose it into basic
building blocks. Subramanian and Wang (1993) use itera-
tively deepening search to compose a sequence of “abstract
mechanisms” that achieves the desired motion transforma-
tion. Welch and Dixon (1994) use behavior graphs (similar
to bond graphs), and include components in the fluid and
electrical domains. For the most part, these techniques syn-
thesize a design using an abstract representation of behavior,
then use library lookup to map to implementation. However,
because our library contains interacting faces, while theirs
includes complete components, we can design interacting ge-
ometry, while they cannot. Like SketchIT, these techniques
produce design variants.

To construct the BEP-Model, we map from qc-space to
geometry. Joskowicz and Addanki (1988) and Caine (1993)
have also explored the mapping between geometry and c-
space. However, they directly modify the shapes of parts
using numerical techniques while we use library lookup.

Our work is similar in spirit to research exploring the map-
ping from shape to behavior. Joskowicz et al (1995) use kine-
matic tolerance space (an extension of c-space) to examine
how variations in the shapes of parts affect their kinematic
behavior. Their task is to determine how a variation in shape
affects behavior, ours is to determine what constraints on
shape are sufficient to ensured the desired behavior. Faltings
(1992) examines how much a single geometric parameter can
change, all others held constant, without changing the place
vocabulary (topology of c-space). Their task is to determine
how much a given parameter can change without altering
the current behavior, ours is to determine the constraints on
all the parameters sufficient to obtain a desired behavior.

More similar to our task is the work of Faltings and Sun
(1993). They describe an interactive design system that
modifies a user selected parameter until there is a change
in the place vocabulary, and hence a change in behavior.
Then, they use qualitative simulation to determine if the re-
sulting behavior matches the desired behavior. They modify
c-space by modifying geometry, we modify qc-space directly.
Because there are many changes in geometry that map to
the same change in c-space, their search space is larger than
ours. Also, our tool is automatic while theirs is interactive,
and we can generate design variants while they do not.

Gupta and Jakiela (1994) describe a novel technique by
which a known component “carves out” the shape of an un-
known mating component. They require that one of the
interacting shapes is known, but we do not.

There is little previous work in sketch understanding.
Narayanan et al. (1994) use a diagram of a device to reason
about its behavior, but they use a pre-parsed description of



the behaviors of each component while we reason directly
from the geometry of the interacting faces.
Our work builds upon the research in qualitative simula-
tion, particularly, the work of Faltings (1990), Forbus et al.
(1991), and Sacks and Joskowicz (1993). Our techniques for
computing motion are similar to the constraint propagation
techniques of Stallman and Sussman (1976).

FUTURE WORK
A drawback of our current implementation is that our pro-
gram will accept a qc-space if there is at least one branch
in the simulation that passes through the specified states in
the specified order. If one or more of the branches does not
provide the desired behavior, obtaining the correct behavior
depends on the choice of masses, springs, and actuators, as
well as the geometry. In this case, the constraints of the
BEP-Model are insufficient to ensure the desired behavior.
A second drawback is that, because our program as-
sumes inertia-free motion with inelastic collisions, the simu-
lator computes approximate dynamics. However, Sacks and
Joskowicz (1993) demonstrated that these assumptions are
not very restrictive: They examined 2500 mechanisms in an
encyclopedia and found that about 80% could be accurately
modeled with these assumptions.

Our current solution to both of these drawbacks is to
use numerical simulation to verify the final design. Thus
we use approximate dynamics during conceptual design and
progress to more accurate dynamic analysis (which is com-
putationally more expensive) as more of the design details
are selected.
Currently, our techniques are restricted to fixed axis de-
vices, but we believe that this constitutes a significant por-
tion of the variable topology devices used in actual practice.
Sacks and Joskowicz (1993) examined 2500 mechanisms in
an encyclopedia and found that about 25% of all the devices
were fixed axis devices; hence fixed axis devices would ac-
count for more than 25% if the examination were restricted
to variable topology devices. In addition, we are making
progress on extensions to our system which allow it to han-
dle a specific class of non-fixed axis devices. We have iden-
tified a commonly occurring class of devices in which a pair
of parts has three degrees of freedom (instead of two degrees
of freedom as in a fixed axis device) but the configuration
space is still tractable.
This work is clearly at an early stage; we have yet to deter-
mine how well our techniques will scale to design problems
that are more complex than the two working examples re-
ported here.

CONCLUSION
Given the intimate connection between shape and behavior,
design of mechanical artifacts is typically conceived of as the
modification of shape to achieve behavior. But if changes in
shape are attempts to change behavior, and if the mapping
between shape and behavior is quite complex (Caine, 1993),
then, we suggest, why not manipulate a representation of be-
havior? Our qualitative c-space is just such a representation.

We suggest that it is complete and yet offers a far smaller
search space. It is complete because any change in shape will
produce a c-space that maps to one of the qc-spaces that our
program will consider. Qc-space is far smaller precisely be-
cause it is qualitative. Finally, it is an appropriate level of
abstraction because it isolates the differences that matter:
changes in the topology of qc-space are changes in behavior.

REFERENCES
Caine, M. E., 1993, “The Design of Shape from Motion Con-
straints,” MIT AI Lab. TR 1425, September.
Erdman, A. and Sandor, G., 1984, Mechanism Design:
Analysis and Synthesis, Vol. 1, Prentice-Hall, Inc., NJ.
Faltings, B., 1990, “Qualitative Kinematics in Mecha-
nisms,” Artificial Intelligence, Vol. 44, pp. 89–119.
Faltings, B., 1992, “A Symbolic Approach to Qualitative
Kinematics,” Artificial Intelligence, Vol. 56, pp. 139–170.
Faltings, B. and Sun, K., 1993, “Computer-aided Creative
Mechanism Design,” Proceedings IJCAI-93, pp. 1451–1457.
Forbus, K., Nielsen, P., and Faltings, B., 1991, “Qualita-
tive Spatial Reasoning: The CLOCK Project,” Northwest-
ern Univ., The Institute for the Learning Sciences, TR #9.
Gupta, R. and Jakiela, M., 1994, “Simulation and Shape
Synthesis of Kinematic Pairs via Small-Scale Interference
Detection,” Research in Engineering Design, Vol. 6, pp. 103–
123.
Joskowicz, L. and Addanki, S., 1988, “From Kinematics
to Shape: An Approach to Innovative Design,” Proceedings
AAAI-88, pp. 347–352.
Joskowicz, L., Sacks, E., and Srinivasan, V., 1995, “Kine-
matic Tolerance Analysis,” 3rd ACM Symposium on Solid
Modeling and Applications, Utah.
Narayanan, N. H., Suwa, M., and Motoda, H., 1994, “How
Things Appear to Work: Predicting Behaviors from Device
Diagrams,” Proceedings AAAI-94, Vol. 2, Aug., pp. 1161–
1167.
Kota, S. and Chiou, S., 1992, “Conceptual Design of Mech-
anisms Based on Computational Synthesis and Simulation of
Kinematic Building Blocks,” Research in Engineering De-
sign, Vol. 4, #2, pp. 75–88.
Sacks, E. and Joskowicz, L., 1993, “Automated Modeling
and Kinematic Simulation of Mechanisms,” Computer Aided
Design, Vol. 25, #2, Feb., pp. 106–118.
Stahovich, T., 1995, “SketchIT: a Sketch Interpretation
Tool for Conceptual Mechanical Design,” MIT Ph.D. Thesis.
Stallman, R. and Sussman, G., 1976, “Forward Reason-
ing and Dependency-Directed Backtracking in a System for
Computer-Aided Circuit Analysis,” MIT AI Lab. TR 380.
Subramanian, D., and Wang, C., 1993, “Kinematic Syn-
thesis with Configuration Spaces,” The 7th International
Workshop on Qualitative Reasoning about Physical Systems,
May, pp. 228–239.
Ulrich, K, 1988, “Computation and Pre-parametric De-
sign,” MIT AI Lab. TR-1043.
Welch, R. V. and Dixon, J. R., 1994, “Guiding Conceptual
Design Through Behavioral Reasoning,” Research in Engi-
neering Design, Vol. 6, pp. 169–188.


